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First we introduce a new notion of pseudo-anti commuting Ricci tensor for 
real hypersurfaces in the complex quadric Qm = SOm+2/SO2SOm and give a 
complete classification of these hypersurfaces in the complex quadric Qm. Next as 
an application we give a complete classification of Ricci solitons on Hopf real 
hypersurfaces in the complex quadric Qm.
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r é s u m é

Tout d’abord, on introduit notion de tenseur Ricci pseudo-anti commutatif pour 
les hypersurfaces réelles de la quadrique complexe Qm = SOm+2/SOmSO2, 
et on déduit une classification complète des ces hypersurfaces de la quadrique 
complexe Qm. Ensuite, en tant qu’application, on en déduit une classification 
complète des solitons hypersurfaces réelles Ricci sur Hopf de la quadrique 
complexe Qm.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the case of Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian sym-
metric spaces G2(Cm+2) = SUm+2/S(U2Um) and G∗

2(Cm+2) = SU2,m/S(U2Um), which are called complex 
two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [9–11,15–17]). 
These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with 
the Kähler structure J and the quaternionic Kähler structure J. The rank of this kind of Hermitian sym-
metric spaces is equal to 2.

Among the other different types of Hermitian symmetric spaces with rank 2 in the class of compact type 
manifolds, we can give the example of complex quadric Qm = SOm+2/SO2SOm. It is a complex hypersurface 
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in complex projective space CPm (see Smyth [14,19,20]). The complex quadric Qm is considered as a real 
Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [5]). Moreover, it is well known 
that the complex quadric admits two important geometric structures, a complex conjugation structure A
and a Kähler structure J , which anti-commute with each other, that is, AJ = −JA. Then for m≥2 the 
triple (Qm, J, g) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional 
curvature is equal to 4 (see Klein [4] and Reckziegel [12]).

Applying the Kähler structure J of the complex quadric Qm, we can transfer any tangent vector fields 
X on M in Qm as follows:

JX = φX + η(X)N,

where φX = (JX)T denotes the tangential component of JX, η an 1-form defined by η(X) = g(JX, N) =
g(X, ξ) for the Reeb vector field ξ = −JN and N is a unit normal vector field on M in Qm.

When the Ricci tensor Ric commutes or anti-commutes with the structure tensor φ, that is, Ric·φ = φ·Ric
or Ric·φ = −φ·Ric, the Ricci tensor is said to be commuting or anti-commuting respectively. Motivated by 
the notions of commuting and anti-commuting, we consider a new notion of pseudo-anti commuting Ricci 
tensor which was introduced in a paper due to Jeong and Suh [3]. It is defined by

Ric·φ + φ·Ric = κφ, κ�=0 : constant,

where the structure tensor φ is induced from the Kähler structure J of the Hermitian symmetric space.
If the Ricci tensor of a real hypersurface M in Qm satisfies

Ric(X) = aX + bη(X)ξ,

for any vector fields X on M and constants a, b∈R, then M is said to be pseudo-Einstein.
It is known that Einstein, or pseudo-Einstein real hypersurfaces in the sense of Besse [1], Kon [6], and 

Cecil and Ryan [2], satisfy the condition of pseudo-anti commuting Ricci tensor. A real hypersurface of 
type (B) in CPm, which is characterized by Sφ + φS = kφ, k �=0, where S denotes the shape operator of 
M in CPm, and are tubes over a totally real totally geodesic real projective space RPn, m = 2n, satisfy 
the formula of pseudo-anti commuting Ricci tensor (see Yano and Kon [21]). Moreover, it can be easily 
checked that Einstein hypersurfaces and some special kind of pseudo-Einstein hypersurfaces in G2(Cm+2), 
and hypersurfaces of type (B) in G2(Cm+2), which are tubes over a totally real totally geodesic quaternionic 
projective space HPn, m = 2n, satisfy this formula (see Pérez, Suh and Watanabe [11], Suh [15] and [18]).

In the complex quadric Qm, Suh [18,19] classified all contact hypersurfaces in Qm, which satisfy 
Sφ + φS = kφ, k �=0, for the shape operator S of a real hypersurface M in Qm, and has given a char-
acterization of a tube of radius r around an m-dimensional totally real and totally geodesic sphere Sm

in Qm. All of these hypersurfaces in Hermitian symmetric spaces also satisfy the condition of pseudo-anti 
commuting Ricci tensor.

Recently, we have shown that a solution of the Ricci flow equation ∂
∂tg(t) = −2Ric(g(t)) is given by

1
2(LV g)(X,Y ) + Ric(X,Y ) = ρg(X,Y ),

where ρ is a constant and LV denotes the Lie derivative along the direction of the vector field V (see Morgan 
and Tian [7]). Then the solution is said to be a Ricci soliton with potential vector field V and Ricci soliton 
constant ρ, and surprisingly, it satisfies the pseudo-anti commuting condition Ric·φ + φ·Ric = κφ, where 
κ = 2ρ is a non-zero constant.

In the complex two-plane Grassmannian G2(Cm+2), Jeong and Suh [3] gave a classification of Ricci soli-
tons for real hypersurfaces. In this paper we want to give a complete classification of pseudo-anti commuting 
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Ricci tensor for Hopf real hypersurfaces in the complex quadric Qm. In order to do this we introduce some 
background for the study of real hypersurfaces in Hermitian symmetric spaces including complex projective 
space CPm = SUm+1/S(U1Um), complex two-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um), com-
plex hyperbolic two-plane Grassmannian G∗

2(Cm+2) = SU2,m/S(U2Um) and real two-plane Grassmannian, 
that is, a complex quadric Qm.

Okumura [13] proved that the Reeb flow on a real hypersurface in CPm = SUm+1/S(U1Um) is isometric 
if and only if M is an open part of a tube around a totally geodesic CP k ⊂ CPm for some k ∈ {0, . . . , m −1}. 
For the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um) a classification was obtained by Suh 
in [15] and [17]. The Reeb flow on a real hypersurface in G2(Cm+2) is isometric if and only if M is an open 
part of a tube around a totally geodesic G2(Cm+1) ⊂ G2(Cm+2). Moreover, in [16] we have proved that the 
Reeb flow on a real hypersurface in G∗

2(Cm+2) = SU2,m/S(U2Um) is isometric if and only if M is an open 
part of a tube around a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um). For the complex quadric 
Qm = SOm+2/SO2SOm, Suh [18] and [19] has obtained the following result:

Theorem A. Let M be a real hypersurface of the complex quadric Qm, m ≥ 3. Then the Reeb flow on M is 
isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic 
CP k ⊂ Q2k.

On the other hand, when a real hypersurface M in the complex quadric Qm satisfies the formula 
Sφ + φS = kφ, k �=0 constant, for the shape operator S, we say that M is a contact real hypersurface in Qm. 
In the papers due to Suh [19] and [20], we have introduced the classification of contact real hypersurfaces 
in Qm as follows:

Theorem B. Let M be a connected orientable real hypersurface with constant mean curvature in the Hermi-
tian symmetric space Qm = SOm+2/SOmSO2, m≥3. Then M is a contact hypersurface if and only if M is 
congruent to an open part of a tube of radius r, 0 < r < π

2
√

2 , around the m-dimensional sphere Sm which 
is embedded in Qm as a real form of Qm.

In addition to the complex structure J there is another distinguished geometric structure on Qm, namely 
a parallel rank two vector bundle A which contains an S1-bundle of real structures, that is, complex conju-
gations A on the tangent spaces of Qm. The set is denoted by A[z] = {Aλz̄|λ∈S1⊂C}, [z]∈Qm, and it is the 
set of all complex conjugations defined on Qm. Then A[z] becomes a parallel rank 2-subbundle of End TQm. 
This geometric structure determines a maximal A-invariant subbundle Q of the tangent bundle TM of a 
real hypersurface M in Qm. Here the notion of parallel vector bundle A means that (∇̄XA)Y = q(X)AY

for any vector fields X and Y on Qm, where ∇̄ and q denote a connection and a certain 1-form defined on 
T[z]Q

m, [z]∈Qm respectively.
Recall that a nonzero tangent vector W ∈ T[z]Q

m is called singular if it is tangent to more than one 
maximal flat in Qm. Here maximal flat means a 2-dimensional curvature flat maximal totally geodesic 
submanifold in Qm. Such a maximal flat always exists, because the rank of Qm is 2. There are two types of 
singular tangent vectors for the complex quadric Qm as follows:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent 
vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that W/||W || =
(X + JY )/

√
2, then W is singular. Such a singular tangent vector is called A-isotropic.

Here we note that the unit normal N is said to be A-principal if N is invariant under the complex conjugation 
A∈A, that is, AN = N .
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Now at each point z ∈ M let us consider a maximal A-invariant subspace

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ A[z]}

of TzM , z∈M . Thus for a case where the unit normal vector field N is A-isotropic it can be easily checked 
that the orthogonal complement Q⊥

z = Cz�Qz, z∈M , of the distribution Q in the complex subbundle C, 
becomes Q⊥

z = Span [Aξ, AN ]. Here it can be easily checked that the vector fields Aξ and AN belong to 
the tangent space TzM , z∈M if the unit normal vector field N becomes A-isotropic. Then in this paper we 
give a complete classification for real hypersurfaces with pseudo-anti commuting Ricci tensor in the complex 
quadric Qm as follows:

Main Theorem 1. Let M be a Hopf real hypersurface with pseudo-anti commuting Ricci tensor in the complex 
quadric Qm, m≥3. Then M is locally congruent to one of the following:

(i) M is an open part of a tube of radius r, 0 < r < π
2
√

2 , around a totally real and totally geodesic 
m-dimensional unit sphere Sm in Qm, with A-principal unit normal vector field.

(ii) M is an open part of a tube of radius r, 0 < r < π
2 , r �=π

4 , around a totally geodesic k-dimensional 
complex projective space CP k in Q2k, m = 2k. Here the unit normal vector field N is A-isotropic.

When we consider the Ricci soliton (M, g, ξ, ρ) on a real hypersurface in the complex quadric Qm, it can 
be easily checked that (M, g, ξ, ρ) satisfies the condition of pseudo-anti commuting Ricci tensor, that is, 
Ric·φ + φ·Ric = κφ, κ = 2ρ�=0 constant. So, naturally the classification results in Main Theorem 1 can be 
used to study a Ricci soliton (M, g, ξ, ρ). Then by virtue of Theorems A and B, and Main Theorem 1 we 
can state another theorem on Ricci solitons as follows:

Main Theorem 2. Let (M, g, ξ, ρ) be a Ricci soliton on a Hopf real hypersurface in the complex quadric Qm, 
m≥3. Then M is locally congruent to one of the following:

(i) M is a tube of radius r around a totally real and totally geodesic m-dimensional unit sphere Sm in Qm, 
with radius r = 1√

2 cot−1 ( 1
2
√

2(m−1)

)
or r = 1√

2 cot−1 ( 1
2
√

2m

)
. Here the unit normal vector field N is 

A-principal.
(ii) M is a tube of radius r = tan−1

√
k

k−1 around a totally geodesic k-dimensional complex projective space 

CP k in Q2k, m = 2k. Here the unit normal vector field N is A-isotropic.

2. The complex quadric

For more details not contained in this section we refer to [4,12,18–20]. The complex quadric Qm is the 
complex hypersurface in CPm+1 which is defined by the equation z2

1 +· · ·+z2
m+2 = 0, where z1, . . . , zm+2 are 

homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric which is induced from the 
Fubini Study metric on CPm+1 with constant holomorphic sectional curvature 4. The Kähler structure on 
CPm+1 induces canonically a Kähler structure (J, g) on the complex quadric. For each [z] ∈ Qm we identify 
T[z]CP

m+1 with the orthogonal complement Cm+2�Cz̄ of Cz in Cm+2 (see Kobayashi and Nomizu [5]). The 
tangent space T[z]Q

m can then be identified canonically with the orthogonal complement Cm+2� (Cz⊕Cz̄)
of Cz ⊕ Cz̄ in Cm+2, where z̄ ∈ ν[z]Q

m is a normal vector of Qm in CPm+1 at the point [z].
The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group 

SUm+2, namely CPm+1 = SUm+2/S(U1Um+1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of 
the action of the stabilizer S(U1Um+1). The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with 
cohomogeneity one. The orbit containing o is a totally geodesic real projective space RPm+1 ⊂ CPm+1. 
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The second singular orbit of this action is the complex quadric Qm = SOm+2/SO2SOm. This homogeneous 
space model leads to the geometric interpretation of the complex quadric Qm as the Grassmann manifold 
G+

2 (Rm+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Hermitian symmetric space of 
rank 2. The complex quadric Q1 is isometric to a sphere S2 with constant curvature, and Q2 is isometric to 
the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume m ≥ 3
from now on.

We denote by Az̄ the shape operator of Qm in CPm+1 with respect to the unit normal z̄. It is defined by 
Az̄w = ∇̄wz̄ = w̄ for a complex Euclidean connection ∇̄ induced from Cm+2 and all w ∈ T[z]Q

m. That is, 
the shape operator Az̄ is just a complex conjugation restricted to T[z]Q

m. Moreover, it satisfies the following 
for any w ∈ T[z]Q

m and any λ∈S1⊂C

A2
λz̄w = Aλz̄Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄ ¯̄w

= |λ|2w = w.

Accordingly, A2
λz̄ = I for any λ∈S1. So the shape operator Az̄ becomes an anti-commuting involution such 

that A2
z̄ = I and Az̄J = −JAz̄ on the complex vector space T[z]Q

m and

T[z]Q
m = V (Az̄) ⊕ JV (Az̄),

where V (Az̄) = R
m+2∩T[z]Q

m is the (+1)-eigenspace and JV (Az̄) = iRm+2∩T[z]Q
m is the (−1)-eigenspace 

of Az̄. That is, Az̄X = X and Az̄JX = −JX, respectively, for any X∈V (Az̄).
Geometrically this means that the shape operator Az̄ defines a real structure on the complex vector space 

T[z]Q
m, or equivalently, is a complex conjugation on T[z]Q

m. Since the real codimension of Qm in CPm+1

is 2, this induces a parallel S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex 
conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the 
complexification of the m-dimensional sphere Sm. Through each point [z] ∈ Qm there exists a one-parameter 
family of real forms of Qm which are isometric to the sphere Sm. These real forms are congruent to each 
other under action of the center SO2 of the isotropy subgroup of SOm+2 at [z]. The isometric reflection of 
Qm in such a real form Sm is an isometry, and the differential at [z] of such a reflection is a conjugation 
on T[z]Q

m. Thus the family A of conjugations on T[z]Q
m corresponds to the family of real forms Sm of Qm

containing z, and the subspaces V (A) ⊂ TzQ
m correspond to the tangent spaces TzS

m of the real forms 
Sm of Qm.

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be 
described in terms of the complex structure J and the complex conjugations A ∈ A:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each A ∈ A.

3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact metric structure. 
Note that ξ = −JN , where N is a (local) unit normal vector field of M . The tangent bundle TM of M
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splits orthogonally into TM = C ⊕ Rξ, where C = ker(η) is the maximal complex subbundle of TM . The 
structure tensor field φ restricted to C coincides with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z∈M as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Lemma 3.1. ([18]) For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz.
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such 

that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qz = Cz � C(JX + Y ).

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in Qm satisfies

Sξ = αξ,

where α = g(Sξ, ξ) denotes the Reeb function for the Reeb vector field ξ = −JN on M .
When we consider a transform JX of the Kähler structure J on Qm for any vector field X on M in Qm, 

we may put

JX = φX + η(X)N

for a unit normal N to M . Then we consider the Codazzi equation

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y ) + g(X,AN)g(AY,Z)

− g(Y,AN)g(AX,Z) + g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z).

Putting Z = ξ we get

g((∇XS)Y − (∇Y S)X, ξ) = −2g(φX, Y ) + g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ) = g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)

= (Xα)η(Y ) − (Y α)η(X) + αg((Sφ + φS)X,Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y ) − 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ) = −2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(ξ, AN)g(Y,Aξ)η(X)

− 2g(Y,AN)g(ξ, Aξ)η(X) + αg((φS + Sφ)X,Y ) − 2g(SφSX, Y ).

Altogether this implies
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0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y ) + g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ) + 2g(ξ, AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ, Aξ)η(X).

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see Proposition 3 in [12]). Note that t is a 

function on M . First of all, since ξ = −JN , we have

N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.

This implies g(ξ, AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y ) + g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ) − 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(Y,AN)g(ξ, Aξ)η(X).

4. Key lemma

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurface M in Qm induced 
from the curvature tensor R̄ of Qm can be described in terms of the complex structure J and the complex 
conjugations A ∈ A as follows:

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ + g(AY,Z)AX

− g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY + g(SY,Z)SX − g(SX,Z)SY

for any X, Y, Z∈TzM , z∈M .
From this, contracting Y and Z on M in Qm, for a real hypersurface M in Qm we have

Ric(X) = (2m− 1)X −X − φ2X − 2φ2X − g(AN,N)AX −X + g(AX,N)AN − g(JAN,N)JAX

−X + g(JAX,N)JAN + (TrS)SX − S2X

= (2m− 1)X − 3η(X)ξ − g(AN,N)AX + g(AX,N)AN − g(JAN,N)JAX + g(JAX,N)JAN

+ (TrS)SX − S2X

(4.1)

where TrS denotes the trace of the shape operator S and we have used the following

∑2m−1

i=1
g(Aei, ei) = TrA− g(AN,N) = −g(AN,N),

∑2m−1

i=1
g(AX, ei)Aei =

∑2m

i=1
g(AX, ei)Aei − g(AX,N)AN = X − g(AX,N)AN,

∑2m−1
g(JAei, ei)JAX =

∑2m
g(JAei.ei)JAX − g(JAN,N)JAX,
i=1 i=1
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and

∑2m−1

i=1
g(JAX, ei)JAei =

∑2m

i=1
g(JAX, ei)JAei − g(JAX,N)JAN

= JAJAX − g(JAX,N)JAN

= X − g(JAX,N)JAN.

Now we want to check whether a pseudo-Einstein real hypersurface or a contact hypersurface in the 
complex quadric Qm has pseudo-anti commuting Ricci tensor or not.

Example 4.1. Let M be a pseudo-Einstein real hypersurface in Qm. The Ricci tensor is given by Ric(X) =
aX + bη(X)ξ. Then Ric(φX) = aφX and φRic(X) = aφX. This implies Ric·φ + φ·Ric = κφ, κ = 2a. So M
satisfies the pseudo-anti commuting Ricci tensor property.

Example 4.2. When we consider a contact hypersurface M in the complex quadric Qm, M is locally congruent 
to a tube of radius r, 0 < r < π

2
√

2 , over a totally geodesic and totally real space form Sm in Qm (see Suh 
[18] and [19]). In [18] and [19] it is also shown that M has three distinct constant principal curvatures 
α = −

√
2 cot(

√
2r), λ = 0 and μ =

√
2 tan(

√
2r) with multiplicities 1, m − 1 and m − 1 respectively. This 

is equivalent to φS + Sφ = kφ, where k �=0 is a constant. Moreover, the unit normal N of M in Qm is 
A-principal, that is, AN = N , and Aξ = −ξ. Then the Ricci tensor becomes

Ric(X) = (2m− 1)X − 2η(X)ξ −AX + hSX − S2X

where h = TrS is defined as the trace of the shape operator S on M and denotes the mean curvature of M
in Qm.

From this it follows that

(Ric·φ + φ·Ric)X = (4m− 2)φX − (Aφ + φA)X

+ h(Sφ + φS)X − (S2φ + φS2)X.

Since Sφ +φS = kφ implies SφS +φS2 = kφS and S2φ +SφS = kSφ respectively, we get the following:

S2φ + 2SφS + φS2 = k(φS + Sφ).

On the other hand, in Suh [18] and [19] we saw the following for contact hypersurfaces in Qm with 
A-principal normal vector field

2SφS = α(Sφ + φS)X + 2φX

= (αk + 2)φX

= 0,

where we have used αk = −2. Then by the property (Aφ + φA)X = 0 for any vector field X on M in Qm, 
it follows that

(Ric·φ + φ·Ric)X = {(4m− 2) + hk − k2}φX.

Here from the anti-commutativity AJ = −JA between the Kähler structure J and the complex conjugation 
A we note that for the A-principal unit normal vector field
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0 = AJX + JAX

= A(φX + η(X)N) + φAX + η(AX)N

= AφX + φAX + η(X)N + η(AX)N.

It follows that (Aφ + φA)X = 0, because g(AφX, N) = g(φX, N) = 0 and g(AX, N) = g(X, AN) =
g(X, N) = 0 for any tangent vector field X on M .

Now we give an important proposition which will be used in the proof of our Main Theorem 2 as follows:

Proposition 4.3. Let M be a Hopf real hypersurface with pseudo-anti commuting Ricci tensor in the complex 
quadric Qm. Then the unit normal N becomes singular, that is, N is either A-isotropic or A-principal.

Proof. By putting X = ξ in (4.1), we have the following

Ric(ξ) = (2m− 1)ξ − 3ξ − g(AN,N)Aξ − g(JAN,N)JAξ

+ g(JAξ,N)JAN + hSξ − S2ξ.

Now let us put X = ξ into the condition of pseudo-anti commutativity Ric·φ + φ·Ric = κφ. We have

0 = φ·Ric(ξ) = −g(AN,N)φAξ + g(JAξ,N)φJAN = −2g(AN,N)φAξ.

This gives g(AN, N) = 0 or Aξ = η(Aξ)ξ. From the first case we know that the unit normal vector field 
N is A-isotropic. In the second case, the involution property of the complex conjugation A on Qm gives 
ξ = A2ξ = βAξ = β2ξ, where we have put β = g(Aξ, ξ). This gives β = ±1. Now let us consider β = −1. 
Then Aξ = −ξ = JN and Aξ = −AJN = JAN . This means AN = N , that is, the unit normal vector field 
N is A-principal. �

By virtue of this proposition, naturally we consider two cases, that N is either A-isotropic or A-principal 
for real hypersurfaces with pseudo-anti commuting Ricci tensor in Qm. So in section 5 we give a complete 
classification of pseudo-anti commuting real hypersurfaces in Qm with A-principal unit normal vector field, 
and in section 6 we will complete our Main Theorem 2 for the case of A-isotropic unit normal vector field.

In the proof of our Main Theorems 1 and 2, we want to give more information on Hopf hypersurfaces 
in the complex quadric with A-principal or A-isotropic normal vector field. Using the formulas given in 
section 3 we can prove two important lemmas as follows:

Lemma 4.4. ([18]) Let M be a Hopf hypersurface in Qm such that the normal vector field N is A-principal ev-
erywhere. Then α is constant. Moreover, if X ∈ C is a principal vector field of M with principal curvature λ, 
then 2λ �= α and φX is a principal vector field of M with principal curvature αλ+2

2λ−α .

Lemma 4.5. ([18]) Let M be a Hopf hypersurface in Qm, m ≥ 3, such that the normal vector field N is 
A-isotropic everywhere. Then α is constant.

5. Pseudo-anti commuting Ricci tensor for real hypersurfaces with A-principal normal vector field

In this section we consider an A-principal normal vector field N , that is, AN = N , for a real hypersurface 
M in Qm. Then (4.1) becomes

Ric(X) = (2m− 1)X − 2η(X)ξ −AX + hSX − S2X (5.1)
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where h = TrS denotes the mean curvature of M in Qm, defined as the trace of the shape operator S on M . 
Then from this, by differentiating the Ricci tensor, we have

(∇XRic)Y = −2g(∇Xξ, Y )ξ − 2η(Y )∇Xξ − (∇XA)Y + (Xh)SY + h(∇XS)Y − (∇XS2)Y

= −2g(φSX, Y )ξ − 2η(Y )φSX − (∇XA)Y + (Xh)SY + h(∇XS)Y − (∇XS2)Y,
(5.2)

where (∇XA)Y = ∇X(AY ) − A∇XY . Here, AY belongs to TzM , z ∈ M , from the fact that g(AY, N) =
g(Y, AN) = g(Y, N) = 0 for any tangent vector Y on M .

Now differentiate the condition of pseudo-anti commuting Ricci tensor as follows:

(∇XRic)φY + Ric((∇Xφ)Y ) + (∇Xφ)(Ric(Y )) + φ(∇XRic)Y = k(∇Xφ)Y.

Then the first term becomes

(∇XRic)φY = −2g(φSX, Y )ξ − 2η(φY )∇Xξ − (∇XA)φY + (Xh)SφY

+ h(∇XS)φY − (∇XS2)φY.
(5.3)

The second term is

Ric((∇Xφ)Y ) = η(Y )
{
(2m− 1)SX − 2αη(X)ξ −ASX + hS2X − S3X

}

− g(SX, Y ){2(m− 1)ξ + (hα− α2)ξ}.
(5.4)

The third term becomes

(∇Xφ)(Ric(Y )) = η(Ric(Y ))SX − g(SX,Ric(Y ))ξ

=
{
2(m− 1) + hα− α2}η(Y )SX (5.5)

−
{
(2m− 1)g(SX, Y ) − 2αη(Y )η(X) − g(SX,AY ) + hg(SX,SY ) − g(SX,S2Y )

}
.

Finally the fourth term is given by

φ(∇XRic)Y = −2η(Y )φ2SX − φ(∇XA)Y + (Xh)φSY + hφ(∇XS)Y − φ(∇XS2)Y. (5.6)

Summing up all the above terms, we have the following:

− 2g(φSX, Y )ξ − (∇XA)φY + (Xh)SφY + h(∇XS)φY − (∇XS2)φY

+ η(Y )
{
(2m− 1)SX − 2αη(X)ξ −ASX + hS2X − S3X

}

− g(SX, Y ){2(m− 1)ξ + (hα− α2)ξ}
+

{
2(m− 1) + hα− α2}η(Y )SX

−
{
(2m− 1)g(SX, Y ) − 2αη(Y )η(X) − g(SX,AY )

+ hg(SX,SY ) − g(SX,S2Y )
}
ξ

− 2η(Y )φ2SX − φ(∇XA)Y + (Xh)φSY

+ hφ(∇XS)Y − φ(∇XS2)Y

= κ
{
η(Y )SX − g(SX, Y )ξ

}
.

(5.7)

Moreover, we get the following from the assumption of Hopf
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(∇XS)ξ = ∇X(Sξ) − S∇Xξ = (Xα)ξ + αφSX − SφSX,

and

(∇XS2)ξ = ∇X(S2ξ) − S2∇Xξ = (Xα2)ξ + α2φSX − S2φSX.

Then it follows that

g((∇XS)φY, ξ) = g(φY, (∇XS)ξ) = αg(φSX, φY ) − g(SφSX, φY )

and

g((∇XS2)φY, ξ) = g(φY, (∇XS2)ξ) = α2g(φSX, φY ) − g(S2φSX, φY ).

The inner product of (5.7) with the Reeb vector field ξ while using the above formulas yields

− 2g(φSX, Y ) + hαg(φSX, φY ) − hg(SφSX, φY )

− α2g(φSX, φY ) + g(S2φSX, φY )

+ η(Y ){2(m− 1)αη(X) + (hα2 − α3)η(X)}

− g(SX, Y ){2(m− 1) + (hα− α2)}

+ {2(m− 1) + (hα− α2)}αη(X)η(Y )

− {(2m− 1)g(SX, Y ) − 2αη(Y )η(X) − g(SX,AY )

+ hg(SX, SY ) − g(SX, S2Y )}ξ

= κ{αη(X)η(Y ) − g(SX, Y )}.

(5.8)

Now let us put SX = λX, X∈Tλ, where X is orthogonal to the Reeb vector field ξ, and SφX = μφX, and 
Y = X in (5.8). Then by Lemma 4.4 in section 4, we have

[
− 2 + hα− hμ− α2 + μ2 − {2(m− 1) + hα− α2} − {(2m− 1) − g(X,AX) + hλ− λ2}

]
λ = −κλ.

For a non-vanishing principal curvature λ, it can be rewritten as follows:

λ2 + μ2 − h(λ + μ) − {4m− 1 − g(X,AX)} + κ = 0. (5.9)

In order to prove our Main Theorem 1, we consider the condition of pseudo-anti commuting Ricci tensor. 
Then it follows that

Ric(φX) + φRic(X) = 2(2m− 1)φX + h(Sφ + φS)X − (S2φ + φS2)X

= {κ− 2(2m− 1)}φX.
(5.10)

From this, if we consider X∈Tλ such that SX = λX, SφX = μφX, μ = αλ+2
2λ−α in (5.10), we have

λ2 + μ2 − h(λ + μ) − {2(2m− 1) − κ} = 0. (5.11)

Comparing (5.9) and (5.11) for λ�=0, we have that for any X∈Tλ
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g(X,AX) = 1. (5.12)

This means that the eigenvector X in the principal curvature space Tλ belongs to the eigenspace V (A) with 
complex conjugation A, that is, X∈V (A), AX = X. Similarly, for the eigenvector Y ∈Tμ with non-vanishing 
principal curvature μ�=0 we have

λ2 + μ2 − h(λ + μ) − {4m− 1 − g(Y,AY )} + κ = 0. (5.13)

From this, if we compare with (5.11), we know that for any eigenvector Y ∈Tμ, μ�=0,

g(Y,AY ) = 1. (5.14)

Then (5.14) implies that the eigenvector Y ∈Tμ belongs to the eigenspace V (A), that is, Y ∈V (A), AY = Y . 
But the vector Y ∈Tμ becomes Y = φX for an eigenvector X∈Tλ. Then this gives AY = AφX = −φAX =
−φX = −Y , that is, Y ∈JV (A), which gives a contradiction. Accordingly, we deduce that one of the principal 
curvatures vanishes. So let us say λ = 0. Then μ = − 2

α . By Lemma 3.1, the expression of the shape operator 
S of M in Qm becomes

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 · · · 0 0 · · · 0
0 − 2

α · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · − 2
α 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This means that the shape operator satisfies Sφ + φS = kφ, where k = − 2
α . Then by a theorem due to 

Suh [18] and [19], M is a tube of radius r around a totally geodesic and totally real m-dimensional sphere 
Sm in Qm.

6. Pseudo-anti commuting Ricci tensor for real hypersurfaces with A-isotropic normal vector field

In this section we want to prove our Main Theorem 2 for real hypersurfaces with pseudo-anti commuting 
Ricci tensor in Qm with A-isotropic unit normal vector field.

Before proving our Main Theorem 2 we prove a proposition

Proposition 6.1. Let M be a Hopf real hypersurface with pseudo-anti commuting Ricci tensor in complex 
quadric Qm, m≥3 with A-isotropic unit normal vector field. Then the distributions Q and Q⊥ = C�Q are 
invariant under the shape operator S of M in Qm.

Proof. Since M is A-isotropic, by the formulas in section 3 we know that g(Aξ, ξ) = 0, g(AN, N) = 0 and 
g(Aξ, N) = 0. In this case the Ricci tensor becomes

Ric(X) = (2m− 1)X − 3η(X)ξ + g(AX,N)AN + g(AX, ξ)Aξ + hSX − S2X. (6.1)

From this, the condition of pseudo-anti commuting Ricci tensor φ·Ric(X) + Ric(φX) = κφX is given by

φ·Ric(X) + Ric(φX) = 2(2m− 1)φX − 2g(Aξ,X)AN + 2g(AN,X)Aξ

+ h(φS + Sφ)X − (φS2 + S2φ)X

= κφX

(6.2)
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for any X tangent to M . Substituting the vector fields Aξ and AN respectively and using φAN = Aξ and 
φAξ = −AN , we have

φ·Ric(Aξ) = Ric(AN) − κAN

= −2mAN + hβφAξ − β2φAξ

= {−2m− hβ + β2}AN,

(6.3)

where the function β denotes g(Aξ, ξ). This gives the following for some scalar functions δ and ν as fol-
lows:

Ric(AN) = δAN and Ric(Aξ) = νAξ. (6.4)

Now we consider a new symmetric operator T which is given by T = hS − S2. Then by (6.4) we know 
that the new operator T preserves the distribution Q⊥ = Span[Aξ, AN ], that is, g(TQ, Q⊥) = 0. Then 
the commutativity, ST = TS, between the symmetric operator T and the shape operator S implies the 
existence of a common basis on M which simultaneously diagonalizes both operators. By virtue of this 
property we also have g(SQ, Q⊥) = 0. This means that the distributions Q and Q⊥ are invariant under the 
shape operator S of M in Qm. This gives a complete proof of our Proposition. �

Since g(AN, N) = 0 for an A-isotropic normal vector field, we know that AN = BN (see [18] and [19]), 
where BN denotes the tangential part of AN . It follows that

∇Y (BN) = ∇Y (AN) = {(∇̄Y A)N + A∇̄Y N}T = {q(Y )JAN −ASY }T ,

and

∇Y (Aξ) = {(∇̄Y A)ξ + A∇̄Y ξ}T

= {q(Y )JAξ + AφSY }T ,

where q is a certain 1-form defined on TzM , z∈M and (· · ·)T denotes the tangential component of the vector 
(· · ·) in Qm. We take the derivative of the Ricci tensor as follows:

(∇Y Ric)X = ∇Y (Ric(X)) − Ric(∇Y X)

= −3(∇Y η)(X)ξ − 3η(X)∇Y ξ

+ g(X,∇Y (AN))AN + g(AX,N)∇Y (AN)

+ g((∇Y (Aξ), X)Aξ + η(AX)∇Y (Aξ) + (Y h)SX

+ h(∇Y S)X − (∇Y S
2)X

= −3g(φSY,X)ξ − 3η(X)φSY

+ {q(Y )g(JAN,X) − g(ASY,X)}AN

+ g(AX,N){q(Y )JAN −ASY }T + {q(Y )g(JAξ,X)

+ g(AφSY,X)}Aξ + η(AX){q(Y )JAξ + AφSY }T

+ (Y h)SX + h(∇ S)X − (∇ S2)X.

(6.5)
Y Y
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Using this formula, we will consider the derivative formula of the pseudo-anti commuting Ricci tensor 
property as follows:

(∇Y Ric)φX + Ric((∇Y φ)X) + (∇Y φ)Ric(X) + φ(∇Y Ric)X = κ(∇Y φ)X.

Putting X = ξ and using that the function α is constant in Lemma 4.5 in section 4 for A-isotropic unit 
normal vector field, it follows that

{(2m− 1)SY − 3αη(Y )ξ + g(ASY,N)AN + g(ASY, ξ)Aξ + hS2Y − S3Y }

− 2αη(Y ){2(m− 2)ξ + (hα− α2)ξ} + {2(m− 2) + hα− α2}SY

− 3φ2SY − g(ASY, ξ)φAN + g(AφSY, ξ)φAξ

− h{αφ2SY − φSφSY } − {α2φ2SY − φS2φSY }

= κ{SY − αη(Y )ξ}.

(6.6)

By virtue of Proposition 6.1, we may put

SAξ = βAξ and SAN = γAN.

Then substituting SAξ = βAξ and SAN = γAN into (6.6), it follows that

{(2m− 1)SY − 3αη(Y )ξ + hS2Y − S3Y }

− 2αη(Y ){2(m− 2)ξ + (hα− α2)ξ}

+ {2(m− 2) + hα− α2}SY − 3φ2SY

− h{αφ2SY − φSφSY } − {α2φ2SY − φS2φSY }

= κ{SY − αη(Y )ξ}.

(6.7)

From this, by putting Y = Aξ into (6.7), and using η(SAξ) = 0 and SAξ = βAξ, we have

{(2m− 1)βAξ + (hβ2 − β3)Aξ} + {2(m− 2) + hα− α2}βAξ

+ h{αβAξ + φSφSAξ} + 3βAξ + {α2βAξ + φS2φSAξ}

= κβAξ.

(6.8)

We use the following formulas:

φSφSAξ = −βφSAN = −βγAξ,

and

φS2φSAξ = −βφS2AN = −βγ2Aξ,

because Aξ = φAN and φAξ = −AN . Then (6.8) becomes

β = 0 (6.9)

or

κ = 4m− 2 + hβ − β2 + hα− α2 + h(α− γ) + (α2 − γ2). (6.10)
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From these formulas we can prove the following lemma:

Lemma 6.2. Let M be a Hopf real hypersurface with pseudo-anti commuting Ricci tensor in the complex 
quadric Qm. If SAξ = βAξ and SAN = γAN , then we have the following:

(i) the mean curvature h is non-vanishing,
(ii) β = γ = 0 or α = β = γ.

Proof. We apply the pseudo-anti commuting Ricci tensor condition to the vector field Aξ and use φAN = Aξ

and φAξ = −AN . Then we have

φ·Ric(Aξ) = Ric(AN) − κAN.

The left side of the above equation becomes

φ·Ric(Aξ) = −2mAN + hβφAξ − β2φAξ

= {−2m− hβ + β2}AN

and the right side becomes

Ric(AN) − κAN = {2m + hγ − γ2}AN − κAN.

Consequently

4m + h(β + γ) − (β2 + γ2) = κ.

From this, compared with the formula (6.10), we deduce

hα = hγ + 1.

Therefore h�=0. Similarly, if we apply the pseudo-anti commuting condition to AN , we find another formula

hα = hβ + 1.

From these two formulas, we infer that h(β− γ) = 0. From this, the mean curvature h is non-vanishing and 
β = γ.

Since the unit normal N is A-isotropic, we know that g(ξ, Aξ) = 0. Moreover, by Lemma 4.2 of [18], we 
have the following:

2SφSX = α(Sφ + φS)X + 2φX − 2g(X,AN)Aξ + 2g(X,Aξ)AN. (6.11)

Now let us consider the distribution Q⊥, which is an orthogonal complement of the maximal A-invariant 
subspace Q in the complex subbundle C of TzM , z ∈ M in Qm. Then by Lemma 3.1 in section 3, the orthog-
onal complement Q⊥ = C�Q becomes C�Q = Span [AN, Aξ]. Then by Proposition 6.1, the distribution 
Q⊥ is invariant under the shape operator S. Then (6.11) gives the following for SAN = γAN

(2γ − α)SφAN = (αγ + 2)φAN − 2Aξ

= (αγ + 2)φAN − 2φAN

= αγφAN.
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Here if 2γ − α = 0, then αγ = 2γ2 = 0. This means α = γ = 0, which is in a contradiction to the above 
formula hα = hγ + 1. From this, together with Aξ = φAN , we have the following

SAξ = αγ

2γ − α
Aξ.

From this we know that γ = β and β = αγ
2γ−α imply

β = γ = 0 or γ = β = α. (6.12)

This gives a complete proof of our Lemma. �
Now we assume SY = λY , Y ∈Q. Then (6.11) gives

SφY = μφY, μ = αλ + 2
2λ− α

.

In fact, (6.11) yields (2λ − α)SφY = (αλ + 2)φY for any Y ∈Q, where Y is orthogonal to the vector fields 
AN and Aξ. Here, 2λ − α is non-vanishing. Because, if 2λ − α = 0, then αλ + 2 = 2λ2 + 2 = 0, with 
contradiction.

Substituting these formulas into (6.6), we have the following:

{(2m− 1)λ + hλ2 − λ3} + {2(m− 2) + hα− α2}λ + 3λ + hαλ− hλμ + α2λ− λμ2 = κλ.

Without loss of generality, we can assume that one of the principal curvatures λ and μ is non-vanishing, 
because we can take μ = − 2

α if λ = 0. So let us say λ�=0. Then let us compare with the formulas from the 
derivative and the condition of pseudo-anti commuting Ricci tensor respectively as follows:

κ = 2(2m− 1) + hλ− λ2 + hα− α2 + hα− hμ + α2 − μ2

= 2(2m− 1) + h(λ + μ) − (λ2 + μ2).

This gives hα− hμ = 0. Similarly, for SY = μY we have hα− hλ = 0. Then these two formulas give

h(λ− μ) = 0.

Since we have noted that the mean curvature h is non-vanishing in Lemma 6.2, λ = μ = αλ+2
2λ−α . This implies 

that λ2 − αλ − 1 = 0. Accordingly λ = cot r or − tan r. From this, together with Lemma 6.2, the shape 
operator S of Hopf hypersurface with pseudo-anti commuting Ricci tensor in Qm can be expressed in the 
two cases as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 cot r · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · cot r 0 · · · 0
0 0 0 0 · · · 0 − tan r · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · − tan r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

or
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 α 0 0 · · · 0 0 · · · 0
0 0 α 0 · · · 0 0 · · · 0
0 0 0 cot r · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · cot r 0 · · · 0
0 0 0 0 · · · 0 − tan r · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · − tan r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first case means that the shape operator S and the structure tensor φ commute with each other, 
that is, Sφ = φS, which is equivalent to isometric Reeb flow on M in Qm. Then by a result due to Suh [18]
and [19], M is locally congruent to a tube of radius r around a totally geodesic complex projective space 
Pk(C) in Q2k. The second case also has the same property Sφ = φS. Then also by Suh [18] and [19], we 
know that α(= β = γ) = 2 cot 2r = 0. That means r = π

4 . In this case M is locally congruent to a tube of 
radius r = π

4 over a totally geodesic complex projective space Pk(C) in Q2k. That is, M is minimal. So by 
Lemma 6.2, this case does not occur. This completes the proof of our Main Theorem 1 for A-isotropic unit 
normal N .

7. Ricci solitons and pseudo-anti commuting Ricci tensor

In this section we want to introduce the notion of Ricci flow ∂g(t)∂t = −2Ric(g(t)) and its solution named 
Ricci soliton (M, g, V, ρ) due to Morgan and Tian [7]. It was used to solve the Poincaré Conjecture by 
Perelman [8]. Next we will show that the Ricci soliton (M, g, V, ρ) satisfies the condition of pseudo-anti 
commuting Ricci tensor.

Now let us denote by (M, g) an m-dimensional Riemannian manifold. Then (M, g) is said to be a Ricci 
soliton if there exists a differentiable vector field V such that

1
2(LV g)(X,Y ) + Ric(X,Y ) = ρg(X,Y ), (7.1)

for any vector fields X, Y ∈TzM , z∈Mm and a constant ρ. In this case we say that (M, g, V, ρ) is a Ricci 
soliton with potential vector field V and Ricci soliton constant ρ. Depending on the Ricci soliton constant 
ρ = 0, ρ < 0 or ρ > 0, we say that the Ricci soliton (M, g, V, ρ) is stable, expanding or shrinking.

Now we assume that the potential vector field V coincides with the Reeb vector field ξ. Then (7.1) is 
equivalent to

Ric(X,Y ) + 1
2g((φS − Sφ)X,Y ) = ρg(X,Y ).

From this, Ric(X) = 1
2 (Sφ − φS)X + ρX. Then it gives respectively Ric(φX) = ρφX + 1

2(Sφ − φS)φX and 
φRic(X) = 1

2 (φSφ − φ2S)X + ρφX. By the assumption of M being Hopf, we have the following

Ric·φ(X) + φ·Ric(X) = 2ρφX + 1
2(Sφ2X − φ2SX)

= 2ρφX + 1
2{S(−X + η(X)ξ) + SX − η(SX)ξ}

= 2ρφX.

(7.2)

So the Ricci soliton (M, g, ξ, ρ) satisfies the condition of pseudo-anti commuting Ricci tensor.

Ric·φ + φ·Ric = κφ, κ = 2ρ �= 0 : constant.
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Now let us consider a Hopf real hypersurface M in the complex quadric Qm, m≥3. Then the Hopf Ricci 
soliton (M, g, ξ, κ) satisfies the pseudo-anti commuting Ricci tensor property with Reeb potential vector 
field ξ. So by Proposition 4.3, the unit normal N = Jξ to M in the complex quadric Qm is singular, that is, 
N becomes A-principal or A-isotropic. Then we assert the following:

Lemma 7.1. Let M be a Hopf Ricci soliton real hypersurface in Qm with potential Reeb field ξ. Then the 
Ricci soliton constant ρ is given by

(i) if N is A-principal

ρ = 2(m− 1) + hα− α2,

(ii) and if N is A-isotropic

ρ = 2(m− 2) + hα− α2.

Proof. When the unit normal N is A-principal, the Ricci tensor becomes the following

Ric(X) = (2m− 1)X − 2η(X)ξ −AX + hSX − S2X.

Since (M, g, ξ, ρ) is a Hopf–Ricci soliton and has an A-principal normal vector field, it satisfies

ρ = 1
2(Lξg)(ξ, ξ) + Ric(ξ, ξ)

= g(Ric(ξ), ξ)

= 2(m− 1) + hα− α2,

where we have used Aξ = −ξ for A-principal unit normal vector field.
When the unit normal N is A-isotropic, the Ricci tensor becomes

Ric(X) = (2m− 1)X − 3η(X)ξ + g(AX,N)AN + g(AX, ξ)Aξ + hSX − S2X.

Since (M, g, ξ, ρ) is a Hopf–Ricci soliton and N is A-isotropic, it satisfies

ρ = 1
2(Lξg)(ξ, ξ) + Ric(ξ, ξ)

= g(Ric(ξ), ξ)

= 2(m− 2) + hα− α2.

This completes the proof of our Lemma 7.1. �
Now let us prove our Main Theorem 2 in the introduction. Let (M, g, ξ, ρ) be a Hopf–Ricci soliton real 

hypersurface in the complex quadric Qm. Then Lemma 7.1 (i) for the A-principal unit normal N becomes

{1 − (hα− α2)}X − 2η(X)ξ −AX + hSX − S2X + 1
2(φS − Sφ)X = 0. (7.3)

On the other hand, the Hopf–Ricci soliton real hypersurface (M, g, ξ, ρ) satisfies the condition
Ric·φ + φ·Ric = κφ, κ = 2ρ, then by (i) in our Main Theorem 1 for A-principal unit normal N such a 
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hypersurface M is locally congruent to a tube over a totally geodesic and totally real submanifold Sm

in Qm. Then by Suh [18] and [19], we know that the tube is characterized by Sφ + φS = εφ, ε = − 2
α . The 

expression of the shape operator S of M in the complex quadric Qm becomes

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 · · · 0 0 · · · 0
0 − 2

α · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · − 2
α 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So first we consider the following case:
Case 1. N is A-principal.
Now we consider an eigen vector X∈Tλ, λ = 0. Then X∈V (A)⊕JV (A). In such a case we can divide 

into 3 cases AX = X, AX = −X and AX = 1√
2Y − 1√

2Z for some Y ∈V (A) and Z∈JV (A). Using these 
properties in (7.3), we have three subcases as follows:

Subcase 1.1. X ∈ V (A) ∩ TzM , z∈M .
In this case AX = X. Since X∈Tλ, λ = 0, we know that hα − α2 = 1

α . On the other hand, from the 
expressions of the tube over Sm, we know that h − α = (m − 1)(− 2

α ). Then α = −
√

2 cot
√

2r = − 1
2(m−1) . 

Then the radius of the tube is given by r = 1√
2 cot−1 ( 1

2
√

2(m−1)

)
.

Subcase 1.2. X ∈ JV (A) ∩ TzM , z∈M .
In this case AX = −X. Since X∈Tλ, λ = 0, we know that

{1 − (hα− α2)}X + X + 1
α
X = 0.

Then 1+2α
α = hα − α2. But from the expressions of the shape operator S of M in Qm, we also have 

(h − α)α = −2(m − 1). From this, it follows that α = −
√

2 cot
√

2r = − 1
2m . Then the radius of the tube is 

given by r = 1√
2 cot−1 ( 1

2
√

2m

)
.

Subcase 1.3. X = 1√
2Y + 1√

2Z for Y ∈ V (A) ∩ TzM , Z ∈ JV (A) ∩ TzM , z∈M .
In this case AX = 1√

2Y − 1√
2Z. Then it follows that

{1 − (hα− α2)}( 1√
2
Y + 1√

2
Z) − ( 1√

2
Y − 1√

2
Z) + 1

α
( 1√

2
Y − 1√

2
Z) = 0.

From this, comparing the coefficients of the vector fields Y and Z respectively, we have the following

hα− α2 = 1
α

and

hα− α2 = 2 − 1
α
.

Then we have α = −
√

2 cot
√

2r = 1, which gives a contradiction. So this case can not happen.
Next we consider a Ricci soliton Hopf real hypersurface (M, g, ξ, ρ) in the complex quadric Qm with 

A-isotropic unit normal N as follows:
Case 2. N is A-isotropic.
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In this case we assume that the Ricci soliton (M, g, ξ, ρ) is non-minimal. It is known that the Hopf–Ricci 
soliton (M, g, ξ, ρ) satisfies the pseudo-anti commuting Ricci tensor property. Then by (ii) in our Main The-
orem 1 for A-isotropic unit normal N , M is locally congruent to a tube of radius r over CP k in Q2k. So the 
shape operator S of the pseudo-anti commuting Hopf hypersurface in Qm can be expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 cot r · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · cot r 0 · · · 0
0 0 0 0 · · · 0 − tan r · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · − tan r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, as N is A-isotropic we know that

1
2(Lξg)(X,Y ) + Ric(X,Y ) = ρg(X,Y )

where the Ricci soliton constant ρ is given by

ρ = 2(m− 2) + hα− α2

in Lemma 7.1. Then we get

1
2(Sφ− φS)X + (2m− 1)X − 3η(X)ξ + g(AX,N)AN + g(Aξ,X)Aξ + hSX − S2X

= {2(m− 2) + hα− α2}X.

From this, putting SX = cot rX, SφX = cot rφX, for X⊥ Span{ξ, Aξ, AN}, we have

3 + h cot r − cot2 r = h(cot r − tan r) − (cot r − tan r)2.

This becomes

tan2 r + h tan r + 1 = 0,

where the trace h is given by h = α + 2(k − 1){cot r − tan r} = (2k − 1)(cot r − tan r). So it follows that 
h tan r = (2k−1)(cot r−tan r) tan r = 2k−1 −(2k−1) tan2 r. Then tan2 r = k

k−1 , that is, r = tan−1
√

k
k−1 , 

where 2(k−1) denotes the multiplicities of the principal curvatures cot r and − tan r respectively. Of course, 
this kind of tube becomes non-minimal and pseudo-Einstein as in the following remark:

Remark 7.2. We check whether the Ricci tensor of the tube M over a totally geodesic CP k in Qm, m = 2k, 
mentioned in Suh [18] and [19] satisfies the notion of pseudo-Einstein or not. By a theorem due to Suh 
[18] and [19], the shape operator S commutes with the structure tensor φ, that is, Sφ = φS. In this case 
we know that the normal vector field N of M in Q2k is A-isotropic. Then g(AN, N) = 0, g(Aξ, ξ) = 0, 
g(Aξ, N) = 0. So let us suppose that M is pseudo-Einstein. Then for any vector field X on M the Ricci 
tensor Ric becomes the following



Y.J. Suh / J. Math. Pures Appl. 107 (2017) 429–450 449
Ric(X) = (2m− 1)X − 3η(X)ξ + g(AX,N)AN + g(AX, ξ)Aξ + hSX − S2X

= aX + bη(X)ξ
(7.4)

for some constant real numbers a, b∈R. Putting X = ξ into (7.4), we have

(a + b)ξ = (2m− 4)ξ + (hα− α2)ξ,

where

hα− α2 = {2 cot 2r + 2(k − 1)(cot r − tan r)}2 cot 2r − (2 cot 2r)2

= 2(k − 1)(2 cot 2r)2 = 8(k − 1) cot2 2r.

From this, together with m = 2k, we have

a + b = 4(k − 1){1 + 2 cot2 2r}. (7.5)

For any X orthogonal to the vector fields ξ, Aξ, and AN such that SX = cot rX the equation (7.4)
becomes

aX = (4k − 1)X + {h cot r − cot2 r}X,

where

h cot r − cot2 r = {2 cot 2r + 2(k − 1)2 cot 2r} cot r − cot2 r

= (2k − 1)(cot r − tan r) cot r − cot2 r

= 2(k − 1) cot2 r − (2k − 1).

From this, together with (7.5), we have

a = 2k + 2(k − 1) cot2 r,

b = −2k + 2(k − 1) tan2 r.

Putting X = Aξ into (7.4), and using the properties g(Aξ, ξ) = 0, A2ξ = ξ and SAξ = 0, we have

aAξ = (2m− 1)Aξ + Aξ = 2mAξ = 4kAξ.

From this, together with (7.5), it follows that a = 4k and b = −4 + 8(k − 1) cot2 2r. Comparing with the 
previous values of a and b, we conclude that

cot2 r = k

k − 1 .

Summing up our discussions, we conclude that the tube of radius r = cot−1
√

k
k−1 around CP k in Q2k is 

a pseudo-Einstein Hopf real hypersurface in the complex quadric Q2k with A-isotropic unit normal vector 
field. Of course, the constants a and b are respectively given by a = 4k and b = −4 + 2

k . They have been 
calculated as follows:

a = 2k + 2(k − 1) cot2 r

= 2k + 2(k − 1)· k

k − 1
= 4k,
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and

b = −2k + 2(k − 1) tan2 r

= −2k + 2(k − 1)2

k

= −2k + 2(k2 − 2k + 1)
k

= −4 + 2
k

respectively.
Moreover, it becomes a Ricci soliton (M, ξ, g, ρ) with Ricci soliton constant ρ = 2(m − 2) + hα − α2 in 

Lemma 7.1 and satisfies the condition of pseudo-anti commuting Ricci soliton, that is, Ric·φ + φ·Ric = κφ, 
κ = 2ρ. Of course, the trace h is non-vanishing, that is, M is non-minimal.
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